Acute Antidepressant Activity Investigation of Selected African Medicinal Plants in Mice: A Preliminary Study
##plugins.themes.bootstrap3.article.main##
The therapeutic gap arising from high global incidence of depressive disorders and the efficacy and toxicity shortcomings of existing antidepressant drugs indicate a need to further search the plant kingdom with the goal of discovering novel antidepressant pharmacotherapeutic agents. Crude 50% ethanol Terminalia catappa (CETC), Tapinanthus dodoneifolius (CETD) and Bryophyllum pinnatum (CEBP) leaf extracts were investigated for their acute antidepressant activity on the forced swim (FST) and tail suspension (TST) tests. Groups of mice (n = 6) were each exposed to the tests 1 hour following oral administration of distilled water (10 ml/kg), extracts (125, 250 and 500 mg/kg body weight) and fluoxetine (20 mg/kg), using the mean immobility time as endpoint. Qualitative phytochemical analysis of these crude extracts indicated the presence of alkaloids, cardiac glycosides, saponins, phenolic compounds, tannins, steroids, carbohydrates, flavonoids, terpenoids and anthraquinones. Compared to distilled water treatments (FST, 84.16 ±3.92; TST, 82.85 ±5.84), CETC (FST, 84.17 ±4.44, 71.67 ±1.89, & 44.31 ±8.23*; TST, 79.03 ±2.62, 74.10 ±3.11, & 52.57 ±6.00*) and CEBP (FST, 77.02 ±2.70, 66.11 ±4.42 & 49.99 ±4.20*; TST, 69.51 ±7.24, 49.73 ±11.85* & 46.39 ±5.68**) treatments caused dose-dependent and significant (P < 0.05) reductions in the mean immobility times on both paradigms while CETD caused dose-dependent and significant (P < 0.05) reductions of this parameter only on the TST. Overall, acute antidepressant activities at the highest dose level (500 mg/kg) of all extracts approximated that of the standard antidepressant fluoxetine (20 mg/kg). The findings of this study are a justification for the widespread ethnomedicinal uses of extracts of these plants. There is a need to further characterize their antidepressant and other neuropharmacological effects. 1.
Downloads
Download data is not yet available.
References
-
Lim GY, Tam WW, Lu Y, Ho CS, Zhang MW, Ho RC. Prevalence of depression in the community from 30 countries between 1994 and 2014. Sci Rep. 2018. 8 (1): 2861.
Google Scholar
1
-
Edwards N, Walker S, Paddick S-M, Prina AM, Chinnasamy M, Reddy N, Mboya LB, Mtei M, Varghese M, Nakkasuja N, Guerra M, Sapkota N, Dotchin C. Prevalence of depression and anxiety in older people in low- and middle- income countries in Africa, Asia and South America: A systematic review and meta-analysis. Journal of Affective Disorders. 2023; 325:656-674.
Google Scholar
2
-
Kessler RC, Bromet EJ, de Jonge P, Shahly V, Wilcox M. The burden of depressive illness. In Cohen NL (Ed.). Public health perspectives on depressive disorders. Johns Hopkins Uni. Press; 2017, pp. 40–66.
Google Scholar
3
-
Lépine JP, Briley M. The increasing burden of depression. Neuropsychiatric disease and treatment, 2011;7(sup1):3–7.
Google Scholar
4
-
Farahani M. S., Bahramsoltani R., Farzaei M. H., Abdollahi M., Rahimi R. (2015). Plant-derived natural medicines for the management of depression: an overview of mech. of action. Rev Neurosci. 2015;26 (3):305–321.
Google Scholar
5
-
Patel K, Abdool PS, Rajji TK, Mulsant BH. Pharmacotherapy of major depression in late life: what is the role of new agents? Expert Opinion on Pharmacotherapy. 2017; 18 (6):599–609.
Google Scholar
6
-
Keefe RS, McClintock SM, Roth RM, Doraiswamy PM, Tiger S, Madhoo M. Cognitive effects of pharmacotherapy for major depressive disorder: a systematic review. The Journal of clinical psychiatry. 2014;75(8):3169.
Google Scholar
7
-
Barber JP, Barrett MS, Gallop R, Rynn MA, Rickels K. Short-term dynamic psychotherapy versus pharmacotherapy for major depressive disorder: a randomized, placebo-controlled trial. The Journal of Clinical Psychiatry. 2011;72 (1):19513.
Google Scholar
8
-
Fonagy P. Psychotherapy research: do we know what works for whom? The British Journal of Psychiatry. 2010;197(2):83–85.
Google Scholar
9
-
Minelli A, Zampieri E, Sacco C, Bazzanella R, Mezzetti N, Tessari E, Barlati S, Bortolomasi M. Clinical efficacy of trauma-focused psychotherapies in treatment-resistant depression (TRD) in-patients: A randomized, controlled pilot-study. Psychiatry Research. 2019;273:567–574.
Google Scholar
10
-
De Maat S, Dekker J, Schoevers R, De Jonghe F. Relative efficacy of psychotherapy and pharmacotherapy in the treatment of depression: A meta-analysis. Psychotherapy Research. 2006;16 (5):566–578.
Google Scholar
11
-
Cuijpers P, Sijbrandij M, Koole SL, Andersson G, Beekman AT, Reynolds III CF. The efficacy of psychotherapy and pharmacotherapy in treating depressive and anxiety disorders: A meta‐analysis of direct comparisons. World psychiatry. 2013;12(2):137–148.
Google Scholar
12
-
Thomas KL, Ellingrod VL. Pharmacogenetics of selective serotonin reuptake inhibitors and associated adverse drug reactions. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2009;29(7):822–831.
Google Scholar
13
-
Marshe VS, Islam F, Maciukiewicz M, Bousman C, Eyre HA, Lavretsky H, Mulsant BH, Reynolds CF 3rd, Lenze EJ, Müller DJ. Pharmacogenetic implications for antidepressant pharmacotherapy in late-life depression: a systematic review of the literature for response, pharmacokinetics and adverse drug reactions. The American Journal of Geriatric Psychiatry. 2020;28(6): 609–629.
Google Scholar
14
-
Outhoff K. Switching antidepressants. South African Family Practice. 2015;57(2):32–34.
Google Scholar
15
-
Lader M. Limitations of current medical treatments for depression: disturbed circadian rhythms as a possible therapeutic target. European neuropsychopharmacology. 2007;1 (12):743–755.
Google Scholar
16
-
Efferth T, Li PCH, Konkimalla VSB, Kaina B. From traditional Chinese medicine to rational cancer therapy. Trends in Molecular Medicine. 2007;13(8):353–361.
Google Scholar
17
-
Ezuruike U., Prieto JM. The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations. Journal of Ethnopharmacology. 2014.155(2):857-924.
Google Scholar
18
-
Tahraoui A, El-Hilaly J, Israili ZH, Lyoussi B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). Journal of Ethnopharmacology. 2007. 110 (1):105-17.
Google Scholar
19
-
Shim SY, Aziana I, Khoo BY. Perspective and insight on Clinacanthus nutans Lindau in traditional medicine. International Journal of Integrative Biology. 2013;4 (1):7.09738363.
Google Scholar
20
-
Hosseinzadeh S, Jafarikukhdan A, Hosseini A, Armand R. The Application of Medicinal Plants in Traditional and Modern Medicine: A Review of Thymus vulgaris. International Journal of Clinical Medicine, 2015;6(9):635–642.
Google Scholar
21
-
Tamuno I. Traditional medicine for HIV infected patients in antiretroviral therapy in a tertiary hospital in Kano, Northwest Nigeria. Asian Pacific Journal of Tropical Medicine. 2011;4(2):152–155.
Google Scholar
22
-
Srivastava JK, Shankar E, Gupta S. Chamomile: A herbal medicine of the past with a bright future (review). Molecular Medicine Reports. 2010;3(6):895–901.
Google Scholar
23
-
Habtemariam S, Lentini G. Plant-derived anticancer agents: Lessons from the pharmacology of Geniposide and its aglycone, Genipin. Biomedicines. 2018;6(2):39.
Google Scholar
24
-
Prakoso N, Zakiyah Z, Liyanita A, Rubiyanto D, Fitriastuti D, Ramadani A, Kamari A, Mow S. Antimalarial Activity of Andrographis Paniculata Ness‘s N-hexane Extract and Its Major Compounds. Open Chemistry. 2019;17(1):788–797.
Google Scholar
25
-
Newman D J, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products. 2020;83(3):770–803.
Google Scholar
26
-
Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res. 2012;3(4):200-201.
Google Scholar
27
-
Vlietinck AJ, De Bruyne T, Apers S, Pieters LA. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Med. 1998;64(2):97–109.
Google Scholar
28
-
Rahman MM, Dhar PS, Sumaia, Anika F, Ahmed L, Islam MR, Sultana NA, Cavalu S, Pop O, Rauf A. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomed Pharmacother. 2022 Aug;152:113217. doi: 10.1016/j.biopha.2022.113217. Epub 2022 Jun 6. PMID: 35679719.
Google Scholar
29
-
Monu M, Parle M, Kadian M, Sharma K. A Review on psychosis and anti-psychotic plants. Asian Journal of Pharmaceutical and Clinical Research. 2015;8(4):24–28.
Google Scholar
30
-
Yeung KS, Hernandez M, Mao JJ, Haviland I, Gubili J. Herbal medicine for depression and anxiety: A systematic review with assessment of potential psycho-oncologic relevance. Phytotherapy Research. 2018;32(5):865–891.
Google Scholar
31
-
Bach–Rojecky L, Kalodjera Z, Samarzija I. The antidepressant activity of Hypericum perforatum L. measured by two experimental methods on mice. Acta Pharm. 2004;54 (2):157–162.
Google Scholar
32
-
Farahani MS, Bahramsoltani R, Farzaei MH, Abdollahi M, Rahimi R. Plant-derived natural medicines for the management of depression: an overview of mechanis. of action. Rev Neurosci. 2015;26 (3):305–321.
Google Scholar
33
-
Rahman MR, Ali M, Sharif M, Tajmim A. A review study on the traditional plants has potential antidepressant property. MOJ Cell Sci Rep. 2017;4 (5):138–145.
Google Scholar
34
-
De Vry J, Maurel S, Schreiber R, de Beun R, Jentzsch KR. Comparison of hypericum extracts with imipramine and fluoxetine in animal models of depression and alcoholism. Eur Neuropsychopharmacol. 1999 Dec;9(6):461–468. doi: 10.1016/s0924-977x (99) 00005-x. PMID: 10625112.
Google Scholar
35
-
Lim T.K. Edible medicinal and non-medicinal plants. Vol. 2. New York: Springer; 2012, pp. 143-157.
Google Scholar
36
-
Ratnasooriya WD and Dharmasiri MG. Effects of Terminalia catappa seeds on sexual behavior and fertility of male rats. Asian J. Androl. 2000;2 (3):213–219.
Google Scholar
37
-
Ahmed SM, Swamy V, Gopkumar P, Dhanapal R. Anti-diabetic activity of Terminalia catappa Linn. leaf extracts in alloxan-induced diabetic rats. Iranian Journal of pharmacology and therapeutics. 2005;4(1): 36–40.
Google Scholar
38
-
Anand AV, Divya N, Kotti PP. An updated review of Terminalia catappa. Pharmacogn Rev. 2015; 9(18):93–98.
Google Scholar
39
-
Chen PS, Li JH, Liu TY, Lin TC. Folk medicine Terminalia catappa and its major tannin component, punicalagin, are effective against bleomycin-induced genotoxicity in Chinese hamster ovary cells. Cancer letters, 2000;152(2):115–122.
Google Scholar
40
-
Akinsanya OB, Ayodele PF, Onifade OF, Salimom MO. extenuating Effects of terminalia catappa leaves and persea americana seed extracts on streptozotocin-induced lipids perturbation and pancreatic damage in diabetic rats. Open Journal of Bioscience Research (OJBR). 2021;2(1):01–09.
Google Scholar
41
-
Fan YM, Xu LZ, Gao J, Wang Y, Tang XH, Zhao XN, Zhang ZX. Phytochemical and antiinflammatory studies on Terminalia catappa. Fitoterapia. 2004;75(3–4):253–260.
Google Scholar
42
-
Gao J, Tang X, Dou H, Fan Y, Zhao X, Xu Q. Hepatoprotective activity of Terminalia catappa L. leaves and its two triterpenoids. Journal of Pharmacy and Pharmacology. 2004 Nov;56(11):1449–1455.
Google Scholar
43
-
Taganna JC, Quanico JP, Perono RM, Amor EC, Rivera WL. Tannin-rich fraction from Terminalia catappa inhibits quorum sensing (QS) in Chromobacterium violaceum and the QS-controlled biofilm maturation and LasA staphylolytic activity in Pseudomonas aeruginosa. J Ethnopharmacol. 2011 Apr 12;134(3):865–871. doi: 10.1016/j.jep.2011.01.028. Epub 2011 Feb 1. PMID: 21291979.
Google Scholar
44
-
Lin CC, Hsu YF, Lin TC. Antioxidant and free radical scavenging effects of the tannins of Terminalia catappa L. Anticancer Research. 2001;21 (1A):237–243. PMID: 11299741.
Google Scholar
45
-
Pandya NB, Tigari P, Dupadahalli K, Kamurthy H, Nadendla RR. Antitumor and antioxidant status of Terminalia catappa against Ehrlich ascites carcinoma in Swiss albino mice. Indian journal of pharmacology. 2013 Sep;45(5):464.
Google Scholar
46
-
Wen KC, Shih I, Hu JC, Liao ST, Su TW, Chiang HM. Inhibitory effects of Terminalia catappa on UVB-induced photodamage in fibroblast cell line. Evidence-Based Complementary and Alternative Medicine. 2010;2011.
Google Scholar
47
-
WFO. Tapinanthus dodonaeifolius (DC.) Danser. Published on the Internet;http: //www.worldfloraonline.org/taxon/wfo-0000413258. 2023.
Google Scholar
48
-
Ayorinde BT, Akanji MA, Yakubu MT. Alterations in some marker enzymes of liver and kidney damage following chronic administration of aqueous extract of Tapinanthus globiferus leaves to rats. Pharmacognosy Magazine, 2008;4(15):S9–S14.
Google Scholar
49
-
Raji IA, Chaskda, AA, Manu SA, Downs CT. Bird species use of Tapinanthus dodoneifolius mistletoes parasitising African locust bean trees Parkia biglobosa in Amurum Forest Reserve, Nigeria. Journal of Ornithology. 2021;162 (4):1129–1140.
Google Scholar
50
-
Abdullahi Z, Anuka JA, Salawu AO, Hussaini IM. In-vivo antiplasmodial activity of methanol whole plant extracts of Tapinanthus dodoneifolius (DC) Danser in mice. African Journal of Pharmacy and Pharmacology. 2015;9(37):936–942.
Google Scholar
51
-
Burkill HM. The useful plants of west tropical Africa, Vols. 1-3. The useful plants of west tropical Africa, Vols. 1-3. 1995 (2. ed.).
Google Scholar
52
-
Mohammed M, Idris A, Gandu I, Tanko UM, Muhammad A, Adeiza A. Phytochemical and Antimicrobial Study on the Leaf Extract of Tapinanthus dodoneifolius (Van Teigh) Loranthaceae. Journal of Advances in Medicine and Medical Research. 2019;29(5):1–9.
Google Scholar
53
-
Deeni YY, Sadiq NM. Antimicrobial properties and phytochemical constituents of the leaves of African mistletoe (Tapinanthus dodoneifolius (DC) Danser) (Loranthaceae): an ethnomedicinal plant of Hausaland, Northern Nigeria. J Ethnopharmacol. 2002;83(3):235–40.
Google Scholar
54
-
Abdullahi Z, Anuka JA, Salawu AO, Hussaini IM. In-vivo antiplasmodial activity of methanol whole plant extracts of Tapinanthus dodoneifolius (DC) Danser in mice. African Journal of Pharmacy and Pharmacology. 2015;9(37):936–942.
Google Scholar
55
-
Ofem OE, Eno AE, Imoru J, Nkanu E, Unoh F, Ibu JO. Effect of crude aqueous leaf extract of Viscum album in hypertensive rats. Indian Journal of Pharmacology. 2007;39(1):15–19.
Google Scholar
56
-
Ouédraogo S, Aristide TN, Soméa ML, Pierre IG, Christa S, Bernard B, Ramaroson A. Cardiovascular Properties of Aqueous Extract from Tapinanthus Dodoneifolius DC. Danser. Afr. J. Traditional, Complementary and Alternative Medicines. 2005;2(1):25–30.
Google Scholar
57
-
Harquin Simplice F, David Emery T, Hervé Hervé NA. Enhancing spatial memory: anxiolytic and antidepressant effects of Tapinanthus dodoneifolius (DC) Danser in mice. Neurology Research International. 2014 Feb 5;2014.
Google Scholar
58
-
Rastogi R, Mehrotra B. Compendium of Indian Medicinal Plants. Central Drug Research Institute, Lucknow, 1990;1:388–389.
Google Scholar
59
-
Al-Snafi AE. The Chemical Constituents and Pharmacological Effects of Bryophyllum calycinum. A review. International Journal of Pharma Sciences and Research (IJPSR). 2013;4(12):171–176.
Google Scholar
60
-
Recknagel RO. Carbon tetrachloride hepatotoxicity. Pharmacological Reviews. 1967;19 (2):145–208.
Google Scholar
61
-
Quazi M, Sayyed N, Sheikh S, Gomase P, Choudhari A. Phytochemical analysis of chloroform extract of roots of Kalanchoe pinnata by HPLC and GCMS. Int J Pharm Sci Res. 2011;14(4):1693–1699.
Google Scholar
62
-
Plangger N, Rist L, Zimmermann R, von Mandach U. Intravenous tocolysis with Bryophyllum pinnatum is better tolerated than beta-agonist application. Eur J Obstet Gynecol Reprod Biol. 2006;124(2):168–172.
Google Scholar
63
-
Yamagishi T, Haruna M, Yan XZ, Chang JJ, Lee KH. Antitumor agents, 110, Bryophyllin B, A Novel Potent cytotoxic Bufadienolide from Bryophyllum Pinnatum. J. Nat. Prod. 1989;52 (5):1071–1079.
Google Scholar
64
-
Yadav NP, Dixit VK. Hepatoprotective activity of leaves of Kalanchoe Pinnata Pers. Journal of Ethnopharmacology. 2003;86(2-3):197–202.
Google Scholar
65
-
Salahdeen H, Yemitan OK. Neuropharmacological Effects of Aqueous Leaf Extract of Bryophyllum Pinnatum in Mice. African Journal of Biomedical Research. 2006. 9 (2): 101-107.
Google Scholar
66
-
Supratman U, Fujita T, Akiyama K, Hayashi H, Murakami A, Sakai H, Koshimizu K, Ohigashi H. Anti-tumor Promoting Activity of Bufadienolides from Kalanchoe pinnata and K. daigremontiana × butiflora. Bioscience, biotechnology, and biochemistry. 2001;65(4): 947–949.
Google Scholar
67
-
Rossi-Bergmann B, Costa SS, Borges MBS, da Silva SA, Noleto GR, Souza MLM, Moraes VLG. Immunosuppresive effect of the aqueous extract of Kalanchoe Pinnata in mice. Phytothera. Res. 1994;8(7):399–402.
Google Scholar
68
-
Siddharta P, Chaudhuri AKN. Further studies on the Anti¬inflammatory profile of the Methanolic Fraction of the fresh leaf extract of Bryophyllum Pinnatum. Fitoterapia. 1992;63(5): 451–459.
Google Scholar
69
-
Supratman U, Fujita T, Akiyama K, Hayashi H. New insecticidal bufadienolide, Bryophyllin C from Kalanchoe pinnata. Biosci Biotechnol Biochem. 2000;64 (6):1310–1312.
Google Scholar
70
-
Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther.1977;229(2):327–36.
Google Scholar
71
-
Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl). 1985;85(3):367–370.
Google Scholar
72
-
Yadav RN, Agarwala M. Phytochemical analysis of some medicinal plants. Journal of phytology. 2011 Dec 14;3(12).
Google Scholar
73
-
Trease GE, Evans WE. Textbook of pharmacognosy. 13th ed. London: Baillière Tindall; 1989.
Google Scholar
74
-
Porsolt RD, Brossard G, Hautbois C, Roux S. Rodent models of depression: Forced swimming and tail suspension behavioral despair tests in rats and mice. In: Enna SJ, Williams M, editors. Current Protocols in Neuroscience. Hoboken, NJ: John Wiley & Sons, Inc; 2001. pp. 1–10. Chap 810.
Google Scholar
75
-
Castagné V, Porsolt R. D. & Moser P. Early behavioural screening for antidepressants and anxiolytics. Drug Dev Res. 2006 ;67: 729–742.
Google Scholar
76
-
Castagné V, Moser P, Porsolt RD. Behavioral Assessment of Antidepressant Activity in Rodents. In: Buccafusco JJ, editor. Methods of Behavior Analysis in Neuroscience. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 6. PMID: 21204330.
Google Scholar
77
-
Chandrasekhar Y, Ramya EM, Navya K, Phani Kumar G, Anilakumar KR. Antidepressant like effects of hydrolysable tannins of Terminalia catappa leaf extract via modulation of hippocampal plasticity and regulation of monoamine neurotransmitters subjected to chronic mild stress (CMS). Biomed Pharmacother. 2017; 86:414–425.
Google Scholar
78
-
Majeed M, Pirzadah TB, Mir MA, Hakeem KR, Alharby HF, Alsamadany H, Bamagoos AA, Rehman RU. Comparative study on phytochemical profile and antioxidant activity of an epiphyte, Viscum album L. (white berry mistletoe), derived from different host trees. Plants (Basel). 2021;10(6):1191.
Google Scholar
79
-
Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29(4–5):571–625.
Google Scholar
80
-
Martins Fernandes Pereira K, Calheiros de Carvalho A, André Moura Veiga T, Melgoza A, Bonne Hernández R, Dos Santos Grecco S, Uchiyama Nakamura M, Guo S. (2022). The psychoactive effects of Bryophyllum pinnatum (Lam.) Oken leaves in young zebrafish. PLoS One. 2022 Mar 9;17(3):e0264987.
Google Scholar
81
-
Chen PS, Li JH, Liu TY, Lin TC. Folk medicine Terminalia catappa and its major tannin component, punicalagin, are effective against bleomycin-induced genotoxicity in Chinese hamster ovary cells. Cancer letters. 2000;152(2):115–122.
Google Scholar
82
-
Deeni YY, Sadiq NM. Antimicrobial properties and phytochemical constituents of the leaves of African mistletoe (Tapinanthus dodoneifolius (DC) Danser) (Loranthaceae): an ethnomedicinal plant of Hausaland, Northern Nigeria. J Ethnopharmacol. 2002;83(3):235–240.
Google Scholar
83
-
Pattewar SV. Bryphyllum pinnatum: Phytochemical and Pharmacological Profile. International Journal of Phytopharmacy. 2012;2(1):1–8.
Google Scholar
84