##plugins.themes.bootstrap3.article.main##

Microemulsions are two-phase oil-aqueous systems stabilized by a surfactant/cosurfactant system, formed from the spontaneous self-assembly of hydrophobic or hydrophilic parts of surfactant molecules, essential at the industrial level for their unique properties, improving processes and reducing costs. Their main uses in the pharmaceutical, cosmetic, and food industries are to improve the biopharmaceutical and pharmacokinetic properties of drugs, the skin penetration properties, and the stability and solubility of different ingredients. They are obtained by techniques such as phase inversion and phase titration. They are characterized by different techniques that allow obtaining information on the dynamic properties, droplet size, structural arrangement and orientation, molecular aggregation, and system interactions, which allow improving the formulations continuously. Due to their proven advantages and utilities, as well as their potential applications, it is essential to study these systems.

Downloads

Download data is not yet available.

References

  1. Talianu MT, Dinu-Pîrvu CE, Ghica MV, Anuţa V, Jinga V, Popa L. Foray into Concepts of Design and Evaluation of Microemulsions as a Modern Approach for Topical Applications in Acne Pathology. Nanomaterials. 2020 Nov 19;10(11):2292. doi: 10.3390/nano10112292.
     Google Scholar
  2. Lee KL. Applications and Use of Microemulsions. 2010;6.
     Google Scholar
  3. Salicio MM, Moreno MD. Colloids and interfaces. [Coloides e interfases]. 1ª ed. España: Universidad de Salamanca; 2005. 480 p.
     Google Scholar
  4. Flanagan J, Singh H. Microemulsions: A Potential Delivery System for Bioactives in Food. Crit Rev Food Sci Nutr. 2006 Apr 1;46(3):221–37. doi: 10.1080/10408690590956710.
     Google Scholar
  5. Galán JJ. Influence of temperature on the micellar properties of quaternary ammonium salts in aqueous solution. [Influencia de la temperatura en las propiedades micelares de sales cuaternarias de amonio en disolución acuosa]. Universidad de Santiago de Compostela; 2008.
     Google Scholar
  6. Madrigal GL. Aplicación de la información de patentes para el desarrollo de sistemas coloidales farmacéuticos. Rev CENIC Ciencias Químicas. 2015;46:195-205.
     Google Scholar
  7. Martínez CM. Trabajo Fin De Grado Título: Desarrollo De Micro Y Nanoemulsiones De Liberación Sostenida. [Thesis]. Universidad Complutense; 2016.
     Google Scholar
  8. Cano AM. Preparación de materiales moleculares nanoparticulados y dispersos -vesículas y microemulsiones- empleando fluidos comprimidos [Ph.D. Thesis]. Barcelona: Universidad Autónoma de Barcelona; 2009.
     Google Scholar
  9. Paul B, Mitra RK, Moulik S. Microemulsions: Percolation of conductance and thermodynamics of droplet clustering. Encycl Surf Colloid Sci. 2006 Jan 1.
     Google Scholar
  10. Sujatha B, Himabindu E, Bttu S, Abbulu K. Microemulsions – A review. Journal of Pharmaceutical Sciences and Research. 2020;12(6):750-753.
     Google Scholar
  11. Suhail N, Alzahrani AK, Basha WJ, Kizilbash N, Zaidi A, Ambreen J, et al. Microemulsions: Unique Properties, Pharmacological Applications, and Targeted Drug Delivery. Front Nanotechnol. 2021;3:1-6. doi: 10.3389/fnano.2021.754889.
     Google Scholar
  12. El Seoud OA, Keppeler N, Malek NI, Galgano PD. Ionic Liquid-Based Surfactants: Recent Advances in Their Syntheses, Solution Properties, and Applications. Polymers. 2021 Jan;13(7):1100. doi: https://doi.org/10.3390/polym13071100.
     Google Scholar
  13. Mahboob A, Kalam S, Kamal MS, Hussain SM, Solling T. EOR Perspective of microemulsions: A review. J Pet Sci Eng. 2022 Jan 1;208:109312. doi: https://doi.org/10.1016/j.petrol.2021.109312.
     Google Scholar
  14. Fernández A. Preparación, caracterización y estabilidad de emulsiones y microemulsiones O/W. [Thesis]. Universidad de Granada;2006.
     Google Scholar
  15. Moreno EE, Sampedro MN. Diseño de una nueva suspensión farmacéutica utilizando microemulsiones como vehículo para la incorporación de ibuprofeno. [Thesis]. Ecuador: Universidad de Guayaquil; 2019 [cited 2023 Jun 8].
     Google Scholar
  16. Martini MC, Chivot M, Peyrefitte G. Dermocosmetica y Estética: cosmetología. Barcelona: Elsevier España; 1997. 154p.
     Google Scholar
  17. Lafuente VL, Azcárate MIB, Benito BA. Introduction to organic chemistry. [Introducción a la química orgánica]. ed 4. Publicacions de la Universitat Jaume I; 1997. 260 p.
     Google Scholar
  18. Ghosh PK, Murthy SR. Microemulsions: a potential drug delivery system. Curr Drug Deliv. 2006 Apr;3(2):167–180. doi: 10.2174/156720106776359168.
     Google Scholar
  19. Muñoz M, Ochoa JR, Fernández C. Formación de microemulsiones inversas de acrilamida. [Thesis]. Rev de Ciencia, Tecnología y Medio Ambiente. 2005; 3:29.
     Google Scholar
  20. Rodriguez C. Las Microemulsiones como Vehículos para Administración de Drogas. Acta Farm Bonaer. 2004; 23:8.
     Google Scholar
  21. Flores J. Evaluación in vitro del efecto promotor de microemulsiones de clorhidrato de naltrexona sobre la permeabilidad en la piel [Thesis]. México: Universidad Autónoma del Estado de Morelos; 2018.
     Google Scholar
  22. Lüllmann H, Mohr K, Hein L. Pharmacology: text and atlas. [Farmacología: texto y atlas]. 6 ed. España: Editorial Médica Panamericana; 2010. 412 p.
     Google Scholar
  23. Cirri M, Mura P, Mora PC. Liquid spray formulations of xibornol by using self-microemulsifying drug delivery systems. Int J Pharm. 2007 Aug 1;340(1–2):84–91. doi: 10.1016/j.ijpharm.2007.03.021.
     Google Scholar
  24. Gupta S, Moulik SP. Biocompatible microemulsions and their prospective uses in drug delivery. J Pharm Sci. 2008 Jan;97(1):22–45. doi: 10.1002/jps.21177.
     Google Scholar
  25. Pather SI, Gupte SV, Khankari RK, Hontz J, Kumbale R. Microemulsions as solid dosage forms for oral administration. [Microemulsiones como formas farmacéuticas sólidas para la administracion oral]. Madrid; 2341510, 2001. p13.
     Google Scholar
  26. Fialho SL, da Silva-Cunha A. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Experiment Ophthalmol. 2004 Dec;32(6):626–632. doi: 10.1111/j.1442-9071.2004.00914.x.
     Google Scholar
  27. Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci. 2006 Nov 16;123–126:369–85. doi: 10.1016/j.cis.2006.05.014.
     Google Scholar
  28. Peira E, Chirio D, Carlotti ME, Spagnolo R, Trotta M. Formulation studies of microemulsions for topical applications of acyclovir. J Drug Deliv Sci Technol. 2009 Jan 1;19(3):191–196. https://doi.org/10.1016/S1773-2247(09)50035-4.
     Google Scholar
  29. Hegde RR, Verma A, Ghosh A. Microemulsion: new insights into the ocular drug delivery. ISRN Pharm. 2013;2013:826798. doi: 10.1155/2013/826798. Print 2013.
     Google Scholar
  30. Molina I. Nano- y micro-sistemas farmacéuticos en la administración ocular de medicamentos. Anales de la Real Academia de Doctores de España. 2018;3:394-412.
     Google Scholar
  31. Sharma VK, Koka A, Yadav J, Sharma AK, Keservani RK. Self-Micro Emulsifying Drug Delivery Systems: a Strategy to Improve Oral Bioavailability. Ars Pharm Internet. 2016;57(3):97-109.
     Google Scholar
  32. Constantinides P, Scalart JP, Lancaster C, Marcelo J, Marks G, Ellens H, et al Formulation and intestinal absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides. Pharm Res. 1994 Oct;11(10):6.
     Google Scholar
  33. Gibaud S, Attivi D. Microemulsions for oral administration and their therapeutic applications. Expert Opin Drug Deliv. 2012 Aug;9(8):937–951. doi: 10.1517/17425247.2012.694865.
     Google Scholar
  34. He CX, He ZG, Gao JQ. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin Drug Deliv. 2010 Apr;7(4):445–460. doi: 10.1517/17425241003596337.
     Google Scholar
  35. Rajpoot K, Tekade M, Pandey V, Nagaraja S, Youngren SR, Tekade RK. Chapter 9 - Self-microemulsifying drug-delivery system: ongoing challenges and future ahead. In: Tekade RK, editor. Drug Delivery Systems [Internet]. Academic Press; 2020. p. 393–454. doi:https://doi.org/10.1016/B978-0-12-814487-9.00009-0.
     Google Scholar
  36. Date AA, Nagarsenker MS. Parenteral microemulsions: an overview. Int J Pharm. 2008 May 1;355(1–2):19–30. doi: 10.1016/j.ijpharm.2008.01.004.
     Google Scholar
  37. Dubey R. Controlled-release injectable microemulsions: recent advances and potential opportunities. Expert Opin Drug Deliv. 2014 Feb;11(2):159–173. doi: 10.1517/17425247.2014.870151.
     Google Scholar
  38. Malcolmson C, Satra C, Kantaria S, Sidhu A, Lawrence MJ. Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions. J Pharm Sci. 1998 Jan;87(1):109–116. doi: 10.1021/js9700863.
     Google Scholar
  39. Wang J, Tabata Y, Morimoto K. Aminated gelatin microspheres as a nasal delivery system for peptide drugs: evaluation of in vitro release and in vivo insulin absorption in rats. J Control Release Soc. 2006 Jun 12;113(1):31–37. doi: 10.1016/j.jconrel.2006.03.011.
     Google Scholar
  40. Karasulu HY. Microemulsions as novel drug carriers: the formation, stability, applications and toxicity. Expert Opin Drug Deliv. 2008 Jan;5(1):119–35. doi: 10.1517/17425247.5.1.119.
     Google Scholar
  41. Azeem A, Rizwan M, Ahmad FJ, Khan ZI, Khar RK, Aqil M, et al. Emerging role of microemulsions in cosmetics. Recent Pat Drug Deliv Formul. 2008;2(3):275–289. doi: 10.2174/187221108786241624.
     Google Scholar
  42. Szumała P, Macierzanka A. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems. Int J Pharm. 2022 Mar 5;615:121488. https://doi.org/10.1016/j.ijpharm.2022.121488.
     Google Scholar
  43. Şahin D, Çağlar EŞ, Boran T, Karadağ AE, Özhan G, Üstündağ Okur N. Development, characterization of naringenin-loaded promising microemulsion formulations, and demonstration of anti-aging efficacy by in vitro enzyme activity and gene expression. J Drug Deliv Sci Technol. 2023 Jun 1;84:104422. https://doi.org/10.1016/j.jddst.2023.104422.
     Google Scholar
  44. Pamudji JS. Microemulsion formulation of aloe vera gel and apium graveolens ethanol extract for optimizing hair growth promotion. Asian J Pharm Clin Res. 2015 Jul 1;8(4):319–323.
     Google Scholar
  45. Aboudzadeh MA, Mehravar E, Fernandez M, Lezama L, Tomovska R. Low-Energy Encapsulation of α-Tocopherol Using Fully Food Grade Oil-in-Water Microemulsions. ACS Omega. 2018 Sep 11;3(9):10999–1008. doi: 10.1021/acsomega.8b01272.
     Google Scholar
  46. Silva JDF, Silva YP, Piatnicki CMS, Böckel WJ, Mendonça CRB. Microemulsions: components, characteristics, potentialities in food chemistry and other applications. Quím Nova. 2015:38(9):1196-1206. doi:10.5935/0100-4042.20150135.
     Google Scholar
  47. Ziani K, Fang Y, McClements DJ. Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: vitamin E, vitamin D, and lemon oil. Food Chem. 2012;134(2):1106-1112.
     Google Scholar
  48. Deutch-Kolevzon R, Aserin A, Garti N. Synergistic cosolubilization of omega-3 fatty acid esters and CoQ10 in dilutable microemulsions. Chem Phys Lipids. 2011 Oct 1;164(7):654–663. doi: 10.1016/j.chemphyslip.2011.06.010.
     Google Scholar
  49. Burguera JL, Burguera M. Analytical applications of emulsions and microemulsions. Talanta. 2012 Jul 15;96:11–20.
     Google Scholar
  50. Rao J, McClements DJ. Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate & lemon oil. Food Hydrocoll. 2011 Aug 1;25(6):1413–1423. doi:10.1016/j.foodhyd.2011.02.004.
     Google Scholar
  51. Edris A, Rawlinson-Malone C. Formulation of banana aroma impact ester in water-based microemulsion nano-delivery system for flavoring applications using sucrose laurate surfactant. Procedia Food Sci. 2011 Dec 31;1:1821–1827. DOI:10.1016/j.profoo.2011.09.267.
     Google Scholar
  52. Amar I, Aserin A, Garti N. Solubilization Patterns of Lutein and Lutein Esters in Food Grade Nonionic Microemulsions. J Agric Food Chem. 2003 Jul 1;51(16):4775–4781. https://doi.org/10.1021/jf026222t.
     Google Scholar
  53. Spernath A, Yaghmur A, Aserin A, Hoffman RE, Garti N. Food-grade microemulsions based on nonionic emulsifiers: media to enhance lycopene solubilization. J Agric Food Chem. 2002 Nov 6;50(23):6917–6922. doi: 10.1021/jf025762n.
     Google Scholar
  54. Digout L, Bren K, Palepu R, Moulik S. Interfacial composition, structural parameters and thermodynamic properties of water-in-oil microemulsions. Colloid Polym Sci. 2001 Jul 1;279:655–663.
     Google Scholar
  55. Garti N, Yaghmur A, Aserin A, Spernath A, Elfakess R, Ezrahi S. Solubilization of active molecules in microemulsions for improved environmental protection. Colloids Surf Physicochem Eng Asp. 2003 Dec 10;230(1):183–190. https://doi.org/10.1016/j.colsurfa.2003.09.020.
     Google Scholar
  56. Zheng MY, Liu F, Wang ZW, Baoyindugurong JH. Formation and characterization of self-assembling fish oil microemulsions. Colloid J. 2011 Jun 1;73(3):319–26. DOI:10.1134/S1061933X11030197.
     Google Scholar
  57. Fu X, Feng F, Huang B. Physicochemical characterization and evaluation of a microemulsion system for antimicrobial activity of glycerol monolaurate. Int J Pharm. 2006 Sep 14;321(1):171–175. doi: 10.1016/j.ijpharm.2006.05.019.
     Google Scholar
  58. Gaysinsky S, Davidson PM, McClements DJ, Weiss J. Formulation and Characterization of Phytophenol-Carrying Antimicrobial Microemulsions. Food Biophys. 2008 Mar 1;3(1):54–65.
     Google Scholar
  59. Ferreira JP, Alves D, Neves O, Silva J, Gibbs PA, Teixeira PC. Effects of the components of two antimicrobial emulsions on food-borne pathogens. Food Control. 2010 Mar 1;21(3):227–230. https://doi.org/10.1016/j.foodcont.2009.05.018
     Google Scholar
  60. Zhang H, Shen Y, Weng P, Zhao G, Feng F, Zheng X. Antimicrobial activity of a food-grade fully dilutable microemulsion against Escherichia coli and Staphylococcus aureus. Int J Food Microbiol. 2009 Nov 15;135(3):211–215. doi: 10.1016/j.ijpharm.2010.05.022.
     Google Scholar
  61. Teixeira PC, Leite GM, Domingues RJ, Silva J, Gibbs PA, Ferreira JP. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. Int J Food Microbiol. 2007 Aug 15;118(1):15–19. doi: 10.1016/j.ijfoodmicro.2007.05.008.
     Google Scholar
  62. Zhang H, Cui Y, Zhu S, Feng F, Zheng X. Characterization and antimicrobial activity of a pharmaceutical microemulsion. Int J Pharm. 2010 Aug 16;395(1):154–160. doi: 10.1016/j.ijpharm.2010.05.022.
     Google Scholar
  63. Al-Adham ISI, Al-Hmoud ND, Khalil E, Kierans M, Collier PJ. Microemulsions are highly effective anti-biofilm agents. Lett Appl Microbiol. 2003;36(2):97–100. doi: 10.1046/j.1472-765x.2003.01266.x.
     Google Scholar
  64. Nunes LS, Barbosa JTP, Fernandes AP, Lemos VA, dos Santos WNL, Korn MGA, et al. Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation. Food Chem. 2011 Jul 15;127(2):780–3.
     Google Scholar
  65. Romero L, Keunchkarian S, Reta M. Extraction of biogenic amines and their dansyl derivatives with reverse microemulsions of bis [2-ethylhexyl] sulphosuccinate (AOT) prior to high-performance liquid chromatographic determination. Anal Chim Acta. 2006 Apr 21;565(2):136–144.
     Google Scholar
  66. Sharma AK, Garg T, Goyal AK, Rath G. Role of microemuslsions in advanced drug delivery. Artif Cells Nanomedicine Biotechnol. 2016 May 18;44(4):1177–1785. https://doi.org/10.3109/21691401.2015.1012261.
     Google Scholar
  67. Egito EST, Amaral L, Alencar EN, Oliveira AG. Microemulsion systems: from the design and architecture to the building of a new delivery system for multiple-route drug delivery. Drug Deliv Transl Res. 2021 Oct 1;11(5):2108–2133. https://doi-org.ezproxy.sibdi.ucr.ac.cr/10.1007/s13346-020-00872-8.
     Google Scholar
  68. Abruzzo A, Parolin C, Rossi M, Vitali B, Cappadone C, Bigucci F. Development and Characterization of Azithromycin-Loaded Microemulsions: A Promising Tool for the Treatment of Bacterial Skin Infections. Antibiotics. 2022 Aug 2;11(8):1040. doi: 10.3390/antibiotics11081040.
     Google Scholar
  69. Ita K. Progress in the use of microemulsions for transdermal and dermal drug delivery. Pharm Dev Technol. 2017 May 19;22(4):467–475. doi: 10.3390/antibiotics11081040.
     Google Scholar
  70. Hathout RM, Woodman TJ. Applications of NMR in the characterization of pharmaceutical microemulsions. J Controlled Release. 2012 Jul 10;161(1):62–72. doi: 10.1016/j.jconrel.2012.04.032.
     Google Scholar
  71. Gradzielski M, Duvail M, de Molina PM, Simon M, Talmon Y, Zemb T. Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure. Chem Rev. 2021;121(10):5671-740. https://doi-org.ezproxy.sibdi.ucr.ac.cr/10.1021/acs.chemrev.0c00812.
     Google Scholar